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Outline 

Motivation / Statement of Problem 

Analysis Considerations 
• Testing Considerations (FWER control) 
• Other Inference Considerations 

– Influence Condition (Influence Error rate control) 
– Interaction Condition  (Interaction Error rate control) 

Design Impact 

Summary / Closing Comments 

Presenter
Presentation Notes
Multipopulation Tailoring Trials  assessing effect in the overall population and a predefined subpopulation.



Background 

Trials in Overall Population 
-- exploratory subgroup 
 analyses 

Single population  
Tailoring trials 

Multipopulation 
Tailoring trials 

Continuum of Approaches to Clinical Trials 

Presenter
Presentation Notes
The promise of personalized medicine has resulted in increased attention to subgroup analyses in clinical trial.Approaches range from traditional exploratory analyses of subpopulations to confirmatory analyses of subpopulations.  In confirmatory subpop analyses, the populations are predefined according to some marker (clinical, genetic, demographic).Single population trials study only those patients positive for the predefined marker. Herceptin trials are an example.Multipopulation trials study the overall patient population, allowing inference for the overall pop as well as predefined subpops.



Clinical context 

Marker of response 
• Identifies association 
• Usually not causative 
• Imperfect predictor (but valuable)  

– Drug effect present in marker-positive and marker-negative subgroups, 
with reduced magnitude of effect in marker-negative subgroup 

– FDA draft guidance on enrichment strategies: “experience suggests that 
the selected [markers] often do not precisely dichotomize [the overall 
population] into subpopulations that will and will not respond.” 

 
 



Motivation 

Traditional Development 
• Consider subpopulations only after overall population trials result in 

failure 
• Relies on retrospective analyses of subgroups 

 

Herceptin Example 
• HER-2 expression  
• Single population confirmatory trials (HER-2 positive) 
• Remaining question: efficacy in complementary population? 
• Study NSABP B-47 initiated 14 years later 

 



Efficiency 
• Single study: multiple populations, rather than multiple studies each 

addressing single population 

More informative 
• vs. subpopulation-only trials 
• FDA guidance on enrichment strategies 

Treatment Registration “wants” 
• Overall population indication, with enhanced labeling with info on 

subpopulation effects 
• Simple overall population indication or restricted (“tailored”) 

subpopulation indication, if data warrant 

 

Motivation 
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MULTIPLE TESTING 
Analysis Considerations: 



Multiplicity 

Notation 
• Overall Population, O 
• Pre-defined Subpopulation, G+ 
    where  O = G+ υ  G- 

FWER control 
• HO: no effect in overall population 
• HG+: no effect in pre-defined (marker +) subpopulation 

Successful outcome if either null hypothesis is rejected. 



Guiding Principles 
 
• Logical Relationships of hypotheses 

– “interchangeable” 
– Importance weights 

 
• Performance of procedure 

– Account for positive correlation of test stats for HO and HG+  
(correlation is known: function of overlap of pops) 

 

Choice of Multiple Testing Procedure 
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Dmitrienko et al (2011) 
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Presentation Notes
Procedure Relevance and Procedure Performance



Choice of Multiple Testing Procedure 

Fixed Sequence  

Bonferroni-based 
• Simple 
• Fallback  
• Holm (cyclical chain) 

“Semiparametric” 
• Hochberg/Hommel 

 

 

Feedback  

Parametric Chain  
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Holm (1977); Bretz et al (2009); Zhao et al (2010); Millen et al (2011) 

Presenter
Presentation Notes
Address fixed sequence approach.   How to describe feedback procedures?Feedback procedures:Sequential testing procedures that tests the null intersection first, using first principles.  May gain power by excluding a portion of the rejection region, relying on an idea of consistency demonstration  (b/w overall and subpop) prior to testing the subpop.Mathematically elegant, however the conceptual requirement of consistency not broadly applicable.  [Provides protection in the case of a toxic treatment.]  



Chain Procedures 

Governed by 2 sets of parameters: 
• Hypothesis weights (for initial alpha allocation) 
• Transition matrix (for alpha propagation) 
• “ordering” set in serial chain procedures; data-driven in cyclical 

chain procedures. 

Parameters may be chosen to optimize performance 
metrics such as 

• probability of rejecting at least one null hypothesis 
• probability of rejecting subpopulation null hypothesis, given failure 

to reject overall population null hypothesis 
• Probability of rejecting both null hypotheses 

Millen and Dmitrienko 2011; Bretz et al 2009 
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Multiple Testing Outcomes 

Test of 
Primary 

Hypothesis 

Positive for 
Pre-defined 
subpop only 

Positive for 
Pre-defined 
subpop and 
Overall pop 

Positive for 
Overall pop 

Only 



ADDITIONAL 
CONSIDERATIONS 

Influence Condition 



Overall Population Efficacy 

 It’s possible to achieve statistical significance in the 
overall population O when the effect exists only in the 
predefined subpopulation G+ 

 Rothmann et al (2012) show that the rate of these 
errors can be quite high in some scenarios 

 Appropriate inference should minimize the rate of 
these “influence errors” 

Presenter
Presentation Notes
Marker + subpop cannot drive the overall population conclusion.Error rates depend on the relative size of the predefined subpopulation and the magnitude of effect in that subpopulation.



Influence Condition  

Application of the influence condition provides control 
of the influence error rate. 

An influence error is a conclusion of treatment benefit 
for the overall population when, in fact, there is no 
beneficial effect in the complementary 
subpopulation. 

Presenter
Presentation Notes
Note:  epsilon not necessarily the same for the freq and bayesian assessments.Manipulation of epsilon provides control of the error rate:  higher values of epsilon give lower influence error rates.



Influence Condition 

Principle:  

 In order to support a claim of effectiveness in the 
overall population, the beneficial effect must not be 
limited to only the pre-defined subpopulation. 

–  otherwise the pre-defined subpopulation exerts undue influence on the 
overall population effectiveness conclusion 

Assessment 
• Simple frequentist estimation.   
• Bayesian posterior probability calculation.   

 



Application of Influence Condition 

Relative size of pre-defined subpopulation Influence error rate (%) 
Primary 

Hypothesis tests 
only 

(without 
influence 
condition) 

Influence 
condition with 

λINF=1.1 

Influence 
condition with 

λINF=1.2 

Influence 
condition with 

λINF=1.3 

  
Scenario 1: HR=1 (complementary subpopulation) and HR=1.5 (pre-defined subpopulation) 

0.75 80.28 31.34 19.40 11.72 
0.5 45.68 22.98 11.64 4.20 

0.25 12.92 11.46 6.02 1.88 
  

Scenario 2: HR=1 (complementary subpopulation) and HR=2 (pre-defined subpopulation) 
0.75 99.80 32.04 18.96 10.22 
0.5 88.04 25.96 11.14 3.98 

0.25 31.58 19.64 6.56 1.84 

Presenter
Presentation Notes
We first look at simple frequentist application of the influence condition.  Even straight-forward application provides significant improvement in error rates.  Impact of epsilonImpact of predefined subpop size (relative size)



Comments 

Frequentist Approach 
• Based on simple point estimation 

• Uncertainty around estimate not factored in directly 
• Operating characteristics for any rule may be evaluated 
• Should be done for study design and at study analysis/inference 

• Reflects estimates which are included in labeling 

• Relies on a single parameter 
• Clinical relevance 
• Decision risk tolerance 
 

 

Presenter
Presentation Notes
Single parameter --   max idea



Bayesian approach 

Bayesian formulation 
– Directly assesses likelihood (given the data) of positive effect in the 

marker negative subpop  
– supports decision-making 
– Posterior probabilities not currently included in labeling  

– Uses two separate parameters 
– Clinical relevance 
– Decision threshold (risk tolerance) 

– Can be more computationally intensive 
– formulations available to make computations simple 
– Availability of software to handle estimating posteriors  



Bayesian Approach 

Using conjugate priors and modest assumptions, 
closed form solutions are available for the posterior 
probabilities. 

Example:   
•  Normally distributed endpoint.  Known variance.   
• Normal priors on μij  (i=trmt 1,2; j=pop +,-).  
• Then, posterior for effect size θj== (μ1j-μ2j)/σj is readily derived. 

Result: Pr(θ- ≥ λ1 | Y) = Ф ( [θ*- - λ1]/σ*- ) 

Presenter
Presentation Notes
Computed from a std normal distribution.



Bayesian Approach 

Example:  Time-to-event endpoint.  Assuming normal 
approximation for effect size distribution (log HR), 
applying a normal conjugate prior results in a normal 
posterior with means θ*j and variances σ2

j 

and Pr(θ- ≥ λ1 | Y) = Ф( (θ*- - λ1)/σ*- ) 

 

A similar approach is available for binary endpoints, as 
well.   

Presenter
Presentation Notes
Using a conjugate prior formulation, one can use the standard normal distribution for a closed form solution to the posterior probability, avoiding the use of more complex computing to achieve the estimate.



Summary – Influence Condition 

For inference of overall population effect, the influence 
condition must be satisfied. 
• If influence condition not satisfied, then conclude effect for predefined 

subpopulation only 
• If influence condition is satisfied, then conclude effect for the overall 

population  (Note: this does not mean “equal” effects across 
subgroups) 

Evaluation methods have been proposed based on 
frequentist estimation of effect (point estimates; 
confidence intervals) or posterior probabilities of 
effect. 
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Potential Inferences 

Two-population 
tailoring trial with 

stat signif for 
overall pop 

Efficacy in 
Pre-defined 
subpop only 

“Enhanced” 
Label  

Efficacy in 
Overall pop 

Influence Condition Met 
Influence Condition Not Met 

Presenter
Presentation Notes
2 left bubbles are available if influence condition is met.  Right bubble is available if influence condition is not met.



Statistical 
Significance for 

Overall 
Population 

Test? 

Influence 
Condition 
Satisfied? 

Enhanced 
Label 

Statistical 
Significance for 
Subpopulation 

Test? 

NEGATIVE 
RESULT 

Overall 
Population 

Label 

Tailored 
Population 

Label 

N 

Y 

Y 

N 

N 

Decision Framework 

Y Y 

How about addressing these possibilities below? 



ADDITIONAL 
CONSIDERATIONS 

Interaction Condition 



Interaction Condition 

Principle: 

 In order to achieve a claim of enhanced effect in the 
predefined subpopulation, along with claim of effect 
in the overall population, there must be a differential 
effect between the pre-defined and complementary 
subpopulations. 

– otherwise the broad claim for the overall population is sufficient   



Interaction Condition 

Application of the interaction condition provides control 
of the interaction error rate. 

An interaction error is a conclusion of differential 
benefit for the marker negative and positive 
subpopulations when, in fact, there is no difference 
in effect  

 

Presenter
Presentation Notes
Lambda is not the sameInteraction error is a labeling error but does not convey efficacy when it does not exist.



Assessment of Interaction Condition 

Frequentist 

(est. effect in G+) / (est. effect in G-) > λF  

 

Bayesian 

Pr ( (effect in G+ / effect in G-) > λB | Y, effect in G- > λ1) 

 
 

 



Comments 

Frequentist Approach 
• Based on simple point estimates 
• Single parameter to reflect clinical relevance and decision risk 

tolerance 
• Aligns with observed effect information common in labeling 

 

Bayesian Approach 
• Conveys likelihood of differential effect to support decision making 
• Conditions on the sequential evaluation process (as formulated) 
• Two separate parameters reflect clinical relevance and decision risk 

tolerance 
• Can be more computationally intensive, but closed form solutions and 

availability of software help overcome this limitation 
 



Bayesian Approach 

Example:    
• Normally distributed endpoint.  Known variance. 
• Normal priors on μij  (i=trmt 1,2; j=pop +,-).  
• Then, posterior for effect size θj== (μ1j-μ2j)/σj is readily derived. 

Result:  

Pr ( (effect in G+ / effect in G-) > λB | Y, effect in G- > λ1) 

= joint probability / marginal probability 

• Joint is from Biv Normal ; marginal from std. normal 

Presenter
Presentation Notes
Again, closed form solution available, yet using a Biv Normal and a univariate std normal.



SUMMARY COMMENTS 
Decision Framework 



Statistical 
Significance for 

Overall 
Population 

Test? 

Influence 
Condition 
Satisfied? 

Interaction 
Condition 
Satisfied? 

Enhanced 
Label 

Statistical 
Significance for 
Subpopulation 

Test? 

NEGATIVE 
RESULT 

Overall 
Population 

Label 

Tailored 
Population 

Label 

N 

Y 

Y 

N 

N 

N 

Y 

Decision Framework 

Y 

Y 

Y 



Design Implications 

Trial design reflects the analysis plan 
– Employ simulations to ensure adequate “power” to satisfy 

– Multiple testing strategy 
– Evaluation of the influence condition (for given thresholds) 
– Evaluation of the interaction condition (for given thresholds) 

Specific design features for consideration 
• Sample size in all relevant populations 

– Enrichment strategies  
• Stratification by marker status 

 

 

  



Heterogeneity of effects/response within populations 
exists. 

• Understanding heterogeneity is the goal 
• When knowledge of predictors of varied effect exists, this should be 

available for patients/prescribers 
• The presence of heterogeneity does/should not mean the absence of 

treatment availability for a broad population 
 

 

 
 

Summary Comments 
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Summary Comments 

 Multipopulation Tailoring Trials offer efficient clinical 
development in the presence of potential markers of 
efficacy and may accelerate patient access to 
tailored therapies and “informative” labels. 

 Inference in these trials is more complex than in 
single population trials 

– Multiple testing procedures and Supportive Analyses are needed to 
control potential errors. 

 The decision framework presented supports clinically 
relevant inference based on these trials and enables 
transparent discussion across disciplines and 
between stakeholders.  

Presenter
Presentation Notes
While all applications are presented at the trial level herein, the concepts of decision making are applicable at the program level.   Note that a 10% error rate becomes a 1% error rate when replicated, for example.



Limitations / Future Work 

Trial level vs. program level inference considerations 

Extensions beyond 2-population trials 

Recommendations for decision thresholds 

Presenter
Presentation Notes
Trial vs program level  -- rely on independent replication? (regulators like this) ; pooling across studies?   / somewhat natural in a Bayesian context. Beyond 2-pop trials :   decision principles hold, but the diagram can get much more  complicated.  And the number of hypotheses can grow quite large (making it perhaps impractical)Regulators –  what influence error rates are acceptable?    Similarly, what interaction error rates should be considered?  Some say just “show the data” and let physicians decide; others say labels should be meaningful, simple, informative (not just showing data when irrelevant / not meaningful and perhaps sending incorrect messages)
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